Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia.

Identifieur interne : 000325 ( Main/Exploration ); précédent : 000324; suivant : 000326

Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia.

Auteurs : Jing Qin Wu [Australie] ; Sharadha Sakthikumar [États-Unis] ; Chongmei Dong [Australie] ; Peng Zhang [Australie] ; Christina A. Cuomo [États-Unis] ; Robert F. Park [Australie]

Source :

RBID : pubmed:28232843

Abstract

Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete, Puccinia triticina (Pt). In the present study, 20 Pt isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for Lr20, were analyzed using whole genome sequencing. Compared to the reference genome of the American Pt isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with Lr20 virulence (p < 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (p < 0.05) and marginally significant (p < 0.1) differences in the counts of non-synonymous mutations between Lr20 avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to Lr20. SNP analysis also implicated the potential involvement of epigenetics and small RNA in Pt pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post-transcription levels. Our study is the first to integrate phenotype-genotype association with effector prediction in Pt genomes, an approach that may circumvent some of the technical difficulties in working with obligate rust fungi and accelerate avirulence gene identification.

DOI: 10.3389/fpls.2017.00148
PubMed: 28232843
PubMed Central: PMC5298990


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to
<i>Lr20</i>
in Phenotype-Paired
<i>Puccinia triticina</i>
Isolates from Australia.</title>
<author>
<name sortKey="Wu, Jing Qin" sort="Wu, Jing Qin" uniqKey="Wu J" first="Jing Qin" last="Wu">Jing Qin Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakthikumar, Sharadha" sort="Sakthikumar, Sharadha" uniqKey="Sakthikumar S" first="Sharadha" last="Sakthikumar">Sharadha Sakthikumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Chongmei" sort="Dong, Chongmei" uniqKey="Dong C" first="Chongmei" last="Dong">Chongmei Dong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28232843</idno>
<idno type="pmid">28232843</idno>
<idno type="doi">10.3389/fpls.2017.00148</idno>
<idno type="pmc">PMC5298990</idno>
<idno type="wicri:Area/Main/Corpus">000309</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000309</idno>
<idno type="wicri:Area/Main/Curation">000309</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000309</idno>
<idno type="wicri:Area/Main/Exploration">000309</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to
<i>Lr20</i>
in Phenotype-Paired
<i>Puccinia triticina</i>
Isolates from Australia.</title>
<author>
<name sortKey="Wu, Jing Qin" sort="Wu, Jing Qin" uniqKey="Wu J" first="Jing Qin" last="Wu">Jing Qin Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakthikumar, Sharadha" sort="Sakthikumar, Sharadha" uniqKey="Sakthikumar S" first="Sharadha" last="Sakthikumar">Sharadha Sakthikumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dong, Chongmei" sort="Dong, Chongmei" uniqKey="Dong C" first="Chongmei" last="Dong">Chongmei Dong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW</wicri:regionArea>
<wicri:noRegion>NSW</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete,
<i>Puccinia triticina</i>
(
<i>Pt</i>
). In the present study, 20
<i>Pt</i>
isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for
<i>Lr20</i>
, were analyzed using whole genome sequencing. Compared to the reference genome of the American
<i>Pt</i>
isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with
<i>Lr20</i>
virulence (
<i>p</i>
< 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (
<i>p</i>
< 0.05) and marginally significant (
<i>p</i>
< 0.1) differences in the counts of non-synonymous mutations between
<i>Lr20</i>
avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to
<i>Lr20</i>
. SNP analysis also implicated the potential involvement of epigenetics and small RNA in
<i>Pt</i>
pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post-transcription levels. Our study is the first to integrate phenotype-genotype association with effector prediction in
<i>Pt</i>
genomes, an approach that may circumvent some of the technical difficulties in working with obligate rust fungi and accelerate avirulence gene identification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28232843</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to
<i>Lr20</i>
in Phenotype-Paired
<i>Puccinia triticina</i>
Isolates from Australia.</ArticleTitle>
<Pagination>
<MedlinePgn>148</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.00148</ELocationID>
<Abstract>
<AbstractText>Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete,
<i>Puccinia triticina</i>
(
<i>Pt</i>
). In the present study, 20
<i>Pt</i>
isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for
<i>Lr20</i>
, were analyzed using whole genome sequencing. Compared to the reference genome of the American
<i>Pt</i>
isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with
<i>Lr20</i>
virulence (
<i>p</i>
< 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (
<i>p</i>
< 0.05) and marginally significant (
<i>p</i>
< 0.1) differences in the counts of non-synonymous mutations between
<i>Lr20</i>
avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to
<i>Lr20</i>
. SNP analysis also implicated the potential involvement of epigenetics and small RNA in
<i>Pt</i>
pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post-transcription levels. Our study is the first to integrate phenotype-genotype association with effector prediction in
<i>Pt</i>
genomes, an approach that may circumvent some of the technical difficulties in working with obligate rust fungi and accelerate avirulence gene identification.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jing Qin</ForeName>
<Initials>JQ</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sakthikumar</LastName>
<ForeName>Sharadha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Chongmei</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cuomo</LastName>
<ForeName>Christina A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard Cambridge, MA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Robert F</ForeName>
<Initials>RF</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Agriculture and Environment, Plant Breeding Institute, The University of Sydney Narellan, NSW, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Lr20</Keyword>
<Keyword MajorTopicYN="N">avirulence gene</Keyword>
<Keyword MajorTopicYN="N">comparative genetics</Keyword>
<Keyword MajorTopicYN="N">effectors</Keyword>
<Keyword MajorTopicYN="N">genetic association</Keyword>
<Keyword MajorTopicYN="N">resistance</Keyword>
<Keyword MajorTopicYN="N">secreted proteins</Keyword>
<Keyword MajorTopicYN="N">wheat leaf rust</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28232843</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.00148</ArticleId>
<ArticleId IdType="pmc">PMC5298990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Mar 10;531(7593):233-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26305378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 15;5:450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Feb 24;5:8567</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25708804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Oct 15;30(20):4509-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1679-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26929245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Apr;15(7):1307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25546510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 May 28;11(5):e1004806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Jan;14(1):96-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Feb 25;4:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25722852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Mar;11(5):944-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21280219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 May 20;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Feb 1;31(3):445-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 21;16:718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Aug;27(8):846-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24678832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 22;17:667</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27550217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:513-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 22;14:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23607900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(1):R1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Feb 9;7(2):361-376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27913634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jan 13;4:520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24454317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Sep;75(5):767-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2013;14 Suppl 11:S1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24564169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24150273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Apr;48(4):353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Breed. 2013;32:663-677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24078786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Mar;96(3):264-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2011 Aug 20;38(8):357-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Nov;264(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Wu, Jing Qin" sort="Wu, Jing Qin" uniqKey="Wu J" first="Jing Qin" last="Wu">Jing Qin Wu</name>
</noRegion>
<name sortKey="Dong, Chongmei" sort="Dong, Chongmei" uniqKey="Dong C" first="Chongmei" last="Dong">Chongmei Dong</name>
<name sortKey="Park, Robert F" sort="Park, Robert F" uniqKey="Park R" first="Robert F" last="Park">Robert F. Park</name>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Sakthikumar, Sharadha" sort="Sakthikumar, Sharadha" uniqKey="Sakthikumar S" first="Sharadha" last="Sakthikumar">Sharadha Sakthikumar</name>
</region>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000325 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000325 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28232843
   |texte=   Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28232843" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020